Math Camp

Proof Techniques¹

Math Camp 2012

Prove the following by direct proof.

1. n(n+1) is an even number.

Take any $n \in \mathbb{N}$, then n is either even or odd.

- Suppose n is even $\Rightarrow n = 2m$ for some $m \Rightarrow n(n+1) = 2m(n+1) \Rightarrow n(n+1)$ is even.
- Suppose n is odd $\Rightarrow n+1$ is even $\Rightarrow n+1=2m$ for some $m\Rightarrow n(n+1)=2nm\Rightarrow n(n+1)$ is even. QED
- 2. The sum of the first n natural numbers is $\frac{1}{2}n(n+1)$.

Let $n \in \mathbb{N}$

• Case 1 n is even Then

$$1+2+\ldots+n = (1=n)+(2+(n-1))+\ldots+(\frac{n}{2}+(\frac{n}{2}+1))$$

$$= (n+1)+(n+1)+\ldots+(n+1)$$

$$\frac{n}{2} times$$

$$= \frac{n}{2}(n+1) = \frac{1}{2}n(n+1)$$

• Case 1 n is odd Then

$$1+2+\ldots+n = (1=n)+(2+(n-1))+\ldots+(\frac{n-1}{2}+(\frac{n+3}{2}+1))+\frac{n+1}{2}$$

$$= (n+1)+(n+1)+\ldots+(n+1)+\frac{n+1}{2}$$

$$\frac{n-1}{2} times$$

$$= \frac{n-1}{2}(n+1)+\frac{n+1}{2}$$

$$= \frac{n-1+1}{2}(n+1)$$

$$= \frac{1}{2}n(n+1)$$

3. If 6x + 9y = 101, then either x or y is not an integer.

$$6x + 9y = 101 \Leftrightarrow 3(2x + 3y) = 101 \Leftrightarrow 2x + 3y = \frac{101}{3} \notin \mathbb{Z}$$

• Suppose $x \in \mathbb{Z} \Rightarrow 2x \in \mathbb{Z}$. Then it must be the case that $3y \notin \mathbb{Z}$ since the sum of two integers is also an integer and we know that $2x + 3y = \frac{101}{3} \notin \mathbb{Z}$. Therefore $y \notin \mathbb{Z}$

 $^{^1\}mathrm{If}$ you find any typo please email me: Maria_Jose_Boccardi@Brown.edu

• Suppose $y \in \mathbb{Z} \Rightarrow 3y \in \mathbb{Z}$. Then it must be the case that $2x \notin \mathbb{Z}$ for the same argument. Therefore $x \notin \mathbb{Z}$

Therefore either x or y is not an integer

Prove the following by contrapositive.

1. n(n+1) is an even number.

We want to show that: x is odd $\Rightarrow x \neq n(n+1)$ for any $n \in \mathbb{N}$.

Let $x \in \mathbb{N}$, x odd, then x = 2k + 1 for some $k \in \mathbb{N}$. Suppose x = 2k + 1 = n(n + 1) for some $n \in \mathbb{N}$

- Case 1 n even. Therefore 2k+1=2m(2m+1) for some $m\in\mathbb{N}$. If so then $k=\frac{2m(2m+1)-1}{2}=m(2m+1)-\frac{1}{2}\notin\mathbb{N}$ since $m(2m+1)\in\mathbb{N}$ and $\frac{1}{2}\notin\mathbb{N}$. Therefore we have a contradiction with the fact that $k\in\mathbb{N}$
- Case 2 n odd. Therefore 2k+1=(2m-1)2m for some $m\in\mathbb{N}$. If so then $k=\frac{2m(2m-1)-1}{2}=m(2m-1)-\frac{1}{2}\notin\mathbb{N}$ since $m(2m-1)\in\mathbb{N}$ and $\frac{1}{2}\notin\mathbb{N}$. Therefore we have a contradiction with the fact that $k\in\mathbb{N}$

Both cases lead to a contradiction therefore we have that $x \neq n(n+1)$ for any $n \in \mathbb{N}$.

2. If x + y > 100, then either x > 50 or y > 50.

We want to show that x < 50 and $y < 50 \Rightarrow x + y < 100$. Let x < 50 and y < 50, then x + y < 50 + 50 = 100 QED

Prove the following by contradiction.

1. n(n+1) is an even number.

Suppose n(n+1) is odd. Then n(n+1)=2k+1 for some $k\in\mathbb{N}$, therefore $k=\frac{n(n+1)-1}{2}=\frac{n(n+1)}{2}-\frac{1}{2}$. Since either n or n+1 is even, the first term $\frac{n(n+1)}{2}$ is an integer, so $k\notin\mathbb{N}$. QED

2. $\sqrt{3}$ is an irrational number.

Suppose that $\sqrt{3} \in \mathbb{Q}$, then $\sqrt{3} = \frac{p}{q}$, not both multiple of 3, then

$$3 = \frac{p^2}{q^2} \Rightarrow p^2 = 3q^2$$

then p^2 is multiple of 3, then p is multiple of 3, that is p = 3k for some $k \in \mathbb{N}$. Therefore we have that

$$(3k)^2 = 9k^2 = 3q^2 \Rightarrow 3k^2 = q^2$$

then q^2 is multiple of 3, therefore q is multiple of 3. Contradiction. QED.

3. There are infinitely many prime numbers.

Suppose that there are finitely many prime numbers, $p_1 < p_2 < ... < p_r$. Define $q = p_1 p_2 p_r + 1$. Suppose that p is a prime number that divides q. Then

$$\frac{q}{p} = \frac{p_1 p_2 \dots p_r + 1}{p} = \frac{p_1 p_2 \dots p_r}{p} \frac{1}{p} \in \mathbb{N}$$

Math Camp 3

If $p = p_i$ for some $i \in \{1, 2, ..., r\}$ then $\frac{p_1 p_2 ... p_r}{p} \in \mathbb{N}$, but $\frac{1}{p} \notin \mathbb{N}$, therefore $\frac{q}{p} \notin \mathbb{N}$

If $p \neq p_i$ for some $i \in \{1, 2, ..., r\}$ then p is a prime number different from all the first r prime numbers. Contradiction. QED

Prove the following by induction.

1. n(n+1) is an even number.

P(1): 1(1+1) = 2 is even. So P(1) is true.

Then we need to prove that $P(k) \Rightarrow P(k+1)$. Assume k(k+1) is even we need to show that (k+1)(k+2) is even.

If k(k+1) is even, then (k+1)(k+2) = k(k+1) + 2(k+1) is even since 2(k+1) is even. QED.

 $2. \ 2n < 2^n.$

$$P(1): 2 \le 2^1 \Leftrightarrow 2 \le 2$$
 true.

Then we need to prove that $P(k) \Rightarrow P(k+1)$. Assume $2k \leq 2^k$ we need to show that $2(k+1) \leq 2^k \leq 2^k \leq 2^k$.

$$2^{k+1} = 2^k 2 \ge 2k2 = 2k + 2k \ge 2k + 2 = 2(k+1)$$

for all $k \in \mathbb{N}$ with k > 1

3. $\sum_{i=1}^{n} i^2 = \frac{1}{6}n(n+1)(2n+1)$.

$$P(1): 1^2 = \frac{1}{6}(1+1)(2+1) = \frac{6}{6}$$
 then is true.

Then we need to prove that $P(k) \Rightarrow P(k+1)$. Assume $\sum_{i=1}^{k} i^2 = \frac{1}{6} k (k+1) (2k+1)$ we need to show that $\sum_{i=1}^{k+1} i^2 = \frac{1}{6} (k+1) (k+2) (2(k+1)+1)$. Then we have that

$$\sum_{i=1}^{k+1} i^2 = \sum_{i=1}^{k} i^2 + (k+1)^2 = \frac{1}{6}k(k+1)(2k+1) + (k+1)^2$$

$$= (k+1)\left[\frac{1}{6}k(2k+1) + (k+1)\right]$$

$$= (k+1)\left[\frac{1}{3}k^2 + \frac{7}{6}k + 1\right]$$

$$= \frac{1}{6}(k+1)\left[2k^2 + 7k + 1\right]$$

$$= \frac{1}{6}(k+1)\left[(k+2)(2k+3)\right]$$

$$= \frac{1}{6}(k+1)((k+1)+1)(2(k+1)+1)$$

4. The sum of the first n odd integers is n^2 (This is the first known proof by mathematical induction, attributed to Francesco Maurolico. Just in case you were interested.)

We want to show that $\sum_{i=1}^{n} (2i-1) = n^2$

P(1): $2-1=1^2 \Leftrightarrow 1=1$ so it's true.

Then we need to prove that $P(k) \Rightarrow P(k+1)$. Assume $\sum_{i=1}^{k} (2i-1) = k^2$ we need to show that $\sum_{i=1}^{k+1} (2i-1) = (k+1)^2$. Then we have that

$$\sum_{i=1}^{k+1} (2i-1) = \sum_{i=1}^{k} (2i-1) + (2(k+1)-1)$$
$$= k^2 + 2k + 1 = (k+1)^2$$

Find the error in the following argument, supposedly by induction: If there is only one

horse, then all the horses are of the same color. Now suppose that within any set of n horses, they are all of the same color. Now look at any set of n+1 horses. Number them $1,2,3,\ldots,n,n+1$. Consider the sets $\{1,2,3,\ldots,n\}$ and $\{2,3,4,\ldots,n+1\}$. Each set is a set of n horses, therefore they are all of the same color. But these sets overlap, therefore all horses are the same color. If n=1 then

the sets $\{1, 2, 3, ..., n\}$ and $\{2, 3, 4, ..., n+1\}$ are actually $\{1\}$ and $\{2\}$ and do not overlap, then the proof breaks down because it is not possible to do the step of $P(1) \Rightarrow P(2)$.

Prove the following (solution in Analysis solution sheet):

- 1. Let f and g be functions from \mathbb{R}^k to \mathbb{R}^m which are continuous at x. Then h = f g is continuous at x.
- 2. Let f and g be functions from \mathbb{R}^k to \mathbb{R}^m which are continuous at x. Then h = fg is continuous at x.

Preference Relations

In first semester micro you will be introduced to preference relations. We say that $x \succeq y$, (read "x is weakly preferred to y") if x is at least as good as y to the agent. From this, we can derive two important relations:

- The strict preference relation, \succ , defined by $x \succ y \Leftrightarrow x \succeq y$ but not $y \succeq x$. The strict preference relation is read "x is strictly preferred to y".
- The indifference relation, \sim , defined by $x \sim y \Leftrightarrow x \succeq y$ and $y \succeq x$. The indifference relation is read "x is indifferent to y".

We say that a preference relation is rational if:

- $\forall x, y$, either $x \succeq y$ or $y \succeq x$.
- $\forall x, y, z$, if $x \succeq y$ and $y \succeq z$, then $x \succeq z$.

Prove the following two statements given that preferences are rational:

1. If $x \succ y$ and $y \succ z$, then $x \succ z$.

Suppose that $x \succ y$ (1) and $y \succ z$ (2), then we have that (1) means that $x \succ y \Leftrightarrow x \succeq y$ (a) but not $y \succeq x$ (b); while (2) means that $y \succ z \Leftrightarrow y \succeq z$ (c) but not $z \succeq y$ (d). So from (a) and (c) we have that, given that preferences are rational (transitivity) it is true that $x \succeq z$.

Now we need to prove that is not the case that $z \succeq x$. Let assume, by contradiction that

Math Camp 5

it is the case that $z \succeq x$. From (c) we know that $y \succeq z$ so by transitivity again we have that $y \succeq x$ which contradicts statement (b). QED.

2. If $x \sim y$ and $y \sim z$, then $x \sim z$.

$$x \sim y \Leftrightarrow x \succeq y[a] \& y \succeq x[b]$$

$$y \sim z \Leftrightarrow y \succeq z[c] \& z \succeq y[d]$$

From [a] and [c], using rationality we have that $x \succeq z$ and from [b] and [d] we have that $z \succeq x$, therefore we have that $x \sim z$. QED