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Prove the following by direct proof.

1. n(n+ 1) is an even number.

Take any n ∈ N, then n is either even or odd.

• Suppose n is even ⇒ n = 2m for some m ⇒ n(n+ 1) = 2m(n+ 1)⇒ n(n+ 1) is even.

• Suppose n is odd⇒ n+1 is even⇒ n+1 = 2m for some m⇒ n(n+1) = 2nm⇒ n(n+1)
is even. QED

2. The sum of the first n natural numbers is 1
2n(n+ 1).

Let n ∈ N

• Case 1 n is even
Then
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• Case 1 n is odd
Then

1 + 2 + ...+ n = (1 = n) + (2 + (n− 1)) + ....+ (
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2
+ (

n+ 3

2
+ 1)) +

n+ 1

2

= (n+ 1) + (n+ 1) + .....+ (n+ 1) +
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3. If 6x+ 9y = 101, then either x or y is not an integer.

6x+ 9y = 101⇔ 3(2x+ 3y) = 101⇔ 2x+ 3y =
101

3
/∈ Z

• Suppose x ∈ Z ⇒ 2x ∈ Z. Then it must be the case that 3y /∈ Z since the sum of two
integers is also an integer and we know that 2x+ 3y = 101

3 /∈ Z. Therefore y /∈ Z
1If you find any typo please email me: Maria_Jose_Boccardi@Brown.edu
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• Suppose y ∈ Z ⇒ 3y ∈ Z. Then it must be the case that 2x /∈ Z for the same argument.
Therefore x /∈ Z

Therefore either x or y is not an integer

Prove the following by contrapositive.

1. n(n+ 1) is an even number.

We want to show that: x is odd ⇒ x 6= n(n+ 1) for any n ∈ N.

Let x ∈ N, x odd, then x = 2k + 1 for some k ∈ N. Suppose x = 2k + 1 = n(n + 1) for
some n ∈ N

• Case 1 n even. Therefore 2k+1 = 2m(2m+1) for somem ∈ N. If so then k = 2m(2m+1)−1
2 =

m(2m + 1) − 1
2 /∈ N since m(2m + 1) ∈ N and 1

2 /∈ N. Therefore we have a contradiction
with the fact that k ∈ N
• Case 2 n odd. Therefore 2k+1 = (2m−1)2m for some m ∈ N. If so then k = 2m(2m−1)−1

2 =
m(2m − 1) − 1

2 /∈ N since m(2m − 1) ∈ N and 1
2 /∈ N. Therefore we have a contradiction

with the fact that k ∈ N

Both cases lead to a contradiction therefore we have that x 6= n(n+ 1) for any n ∈ N.

2. If x+ y > 100, then either x > 50 or y > 50.

We want to show that x < 50 and y < 50 ⇒ x + y < 100. Let x < 50 and y < 50, then
x+ y < 50 + 50 = 100 QED

Prove the following by contradiction.

1. n(n+ 1) is an even number.

Suppose n(n + 1) is odd. Then n(n + 1) = 2k + 1 for some k ∈ N, therefore k = n(n+1)−1
2 =

n(n+1)
2 − 1

2 . Since either n or n+ 1 is even, the first term n(n+1)
2 is an integer, so k /∈ N. QED

2.
√
3 is an irrational number.

Suppose that
√
3 ∈ Q, then

√
3 = p

q , not both multiple of 3, then

3 =
p2

q2
⇒ p2 = 3q2

then p2 is multiple of 3, then p is multiple of 3, that is p = 3k for some k ∈ N. Therefore we
have that

(3k)2 = 9k2 = 3q2 ⇒ 3k2 = q2

then q2 is multiple of 3, therefore q is multiple of 3. Contradiction. QED.

3. There are infinitely many prime numbers.

Suppose that there are finitely many prime numbers, p1 < p2 < ... < pr. Define q = p1p2....pr+1.
Suppose that p is a prime number that divides q. Then

q

p
=

p1p2...pr + 1

p
=

p1p2...pr
p

1

p
∈ N
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If p = pi for some i ∈ {1, 2, ..., r} then p1p2...pr

p ∈ N, but 1
p /∈ N, therefore q

p /∈ N

If p 6= pi for some i ∈ {1, 2, ..., r} then p is a prime number different from all the first r prime
numbers. Contradiction. QED

Prove the following by induction.

1. n(n+ 1) is an even number.

P (1) : 1(1 + 1) = 2 is even. So P (1) is true.

Then we need to prove that P (k) ⇒ P (k + 1). Assume k(k + 1) is even we need to show
that (k + 1)(k + 2) is even.

If k(k+1) is even, then (k+1)(k+2) = k(k+1)+2(k+1) is even since 2(k+1) is even. QED.

2. 2n ≤ 2n.

P (1) : 2 ≤ 21 ⇔ 2 ≤ 2 true.

Then we need to prove that P (k) ⇒ P (k + 1). Assume 2k ≤ 2k we need to show that
2(k + 1) ≤ 2(k + 1).

2k+1 = 2k2 ≥ 2k2 = 2k + 2k ≥ 2k + 2 = 2(k + 1)

for all k ∈ N with k > 1

3.
∑n

i=1 i
2 = 1

6n (n+ 1) (2n+ 1).

P (1) : 12 = 1
6 (1 + 1)(2 + 1) = 6

6 then is true.

Then we need to prove that P (k) ⇒ P (k + 1). Assume
∑k

i=1 i
2 = 1

6k (k + 1) (2k + 1) we
need to show that

∑k+1
i=1 i2 = 1

6 (k + 1) (k + 2) (2(k + 1) + 1). Then we have that

k+1∑
i=1

i2 =

k∑
i=1

i2 + (k + 1)2 =
1

6
k (k + 1) (2k + 1) + (k + 1)2

= (k + 1)

[
1

6
k (2k + 1) + (k + 1)

]
= (k + 1)

[
1

3
k2 +

7

6
k + 1

]
=

1

6
(k + 1)

[
2k2 + 7k + 1

]
=

1

6
(k + 1) [(k + 2)(2k + 3)]

=
1

6
(k + 1)((k + 1) + 1)(2(k + 1) + 1)

4. The sum of the first n odd integers is n2 (This is the first known proof by mathematical induc-
tion, attributed to Francesco Maurolico. Just in case you were interested.)

We want to show that
∑n

i=1(2i− 1) = n2
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P(1): 2− 1 = 12 ⇔ 1 = 1 so it’s true.

Then we need to prove that P (k)⇒ P (k+1). Assume
∑k

i=1(2i− 1) = k2 we need to show that∑k+1
i=1 (2i− 1) = (k + 1)2. Then we have that

k+1∑
i=1

(2i− 1) =

k∑
i=1

(2i− 1) + (2(k + 1)− 1)

= k2 + 2k + 1 = (k + 1)2

Find the error in the following argument, supposedly by induction: If there is only one

horse, then all the horses are of the same color. Now suppose that within any set of n horses, they
are all of the same color. Now look at any set of n + 1 horses. Number them 1, 2, 3, . . . , n, n + 1.
Consider the sets {1, 2, 3, . . . , n} and {2, 3, 4, . . . , n+ 1}. Each set is a set of n horses, therefore they
are all of the same color. But these sets overlap, therefore all horses are the same color. If n=1 then

the sets {1, 2, 3, . . . , n} and {2, 3, 4, . . . , n+ 1} are actually {1} and {2} and do not overlap, then the
proof breaks down because it is not possible to do the step of P (1) ; P (2).

Prove the following (solution in Analysis solution sheet):

1. Let f and g be functions from Rk to Rm which are continuous at x. Then h = f−g is continuous
at x.

2. Let f and g be functions from Rk to Rm which are continuous at x. Then h = fg is continuous
at x.

Preference Relations

In first semester micro you will be introduced to preference relations. We say that x � y, (read
“x is weakly preferred to y”) if x is at least as good as y to the agent. From this, we can derive two
important relations:

• The strict preference relation, �, defined by x � y ⇔ x � y but not y � x. The strict preference
relation is read “x is strictly preferred to y”.

• The indifference relation, ∼, defined by x ∼ y ⇔ x � y and y � x. The indifference relation is
read “x is indifferent to y”.

We say that a preference relation is rational if:

• ∀ x, y, either x � y or y � x.

• ∀ x, y, z, if x � y and y � z, then x � z.

Prove the following two statements given that preferences are rational:

1. If x � y and y � z, then x � z.

Suppose that x � y (1) and y � z (2), then we have that (1) means that x � y ⇔ x � y
(a) but not y � x (b); while (2) means that y � z ⇔ y � z (c) but not z � y (d). So from (a)
and (c) we have that, given that preferences are rational (transitivity) it is true that x � z.

Now we need to prove that is not the case that z � x. Let assume, by contradiction that
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it is the case that z � x. From (c) we know that y � z so by transitivity again we have that
y � x which contradicts statement (b). QED.

2. If x ∼ y and y ∼ z, then x ∼ z.

x ∼ y ⇔ x � y[a]&y � x[b]

y ∼ z ⇔ y � z[c]&z � y[d]

From [a] and [c], using rationality we have that x � z and from [b] and [d] we have that z � x,
therefore we have that x ∼ z. QED


